Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion.

نویسندگان

  • Nectarios Klonis
  • Maria P Crespo-Ortiz
  • Iveta Bottova
  • Nurhidanatasha Abu-Bakar
  • Shannon Kenny
  • Philip J Rosenthal
  • Leann Tilley
چکیده

Combination regimens that include artemisinin derivatives are recommended as first line antimalarials in most countries where malaria is endemic. However, the mechanism of action of artemisinin is not fully understood and the usefulness of this drug class is threatened by reports of decreased parasite sensitivity. We treated Plasmodium falciparum for periods of a few hours to mimic clinical exposure to the short half-life artemisinins. We found that drug treatment retards parasite growth and inhibits uptake of hemoglobin, even at sublethal concentrations. We show that potent artemisinin activity is dependent on hemoglobin digestion by the parasite. Inhibition of hemoglobinase activity with cysteine protease inhibitors, knockout of the cysteine protease falcipain-2 by gene deletion, or direct deprivation of host cell lysate, significantly decreases artemisinin sensitivity. Hemoglobin digestion is also required for artemisinin-induced exacerbation of oxidative stress in the parasite cytoplasm. Arrest of hemoglobin digestion by early stage parasites provides a mechanism for surviving short-term artemisinin exposure. These insights will help in the design of new drugs and new treatment strategies to circumvent drug resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite.

Endoperoxide antimalarials based on the ancient Chinese drug Qinghaosu (artemisinin) are currently our major hope in the fight against drug-resistant malaria. Rational drug design based on artemisinin and its analogues is slow as the mechanism of action of these antimalarials is not clear. Here we report that these drugs, at least in part, exert their effect by interfering with the plasmodial h...

متن کامل

Chemical proteomics approach reveals the direct targets and the heme-dependent activation mechanism of artemisinin in Plasmodium falciparum using an artemisinin-based activity probe

Artemisinin and its analogues are currently the most effective anti-malarial drugs. The activation of artemisinin requires the cleavage of the endoperoxide bridge in the presence of iron sources. Once activated, artemisinins attack macromolecules through alkylation and propagate a series of damages, leading to parasite death. Even though several parasite proteins have been reported as artemisin...

متن کامل

Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins

Current first-line artemisinin antimalarials are threatened by the emergence of resistant Plasmodium falciparum. Decreased sensitivity is evident in the initial (early ring) stage of intraerythrocytic development, meaning that it is crucial to understand the action of artemisinins at this stage. Here, we examined the roles of iron (Fe) ions and haem in artemisinin activation in early rings usin...

متن کامل

Potentiation of artemisinin activity against chloroquine-resistant Plasmodium falciparum strains by using heme models.

The influence of different metalloporphyrin derivatives on the antimalarial activity of artemisinin was studied with two chloroquine-resistant strains of Plasmodium falciparum (FcB1-Colombia and FcM29-Cameroon) cultured in human erythrocytes. This potentiation study indicates that the manganese complex of meso-tetrakis(4-sulfonatophenyl)porphyrin has a significant synergistic effect on the acti...

متن کامل

Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum

The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 28  شماره 

صفحات  -

تاریخ انتشار 2011